skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chenoweth, David M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nuclear condensates play many important roles in chromatin functions, but how cells regulate their nucleation and growth within the complex nuclear environment is not well understood. Here, we report how condensate properties and chromatin mechanics dictate condensate growth dynamics in the nucleus. We induced condensates with distinct properties using different proteins in human cell nuclei and monitored their growth. We revealed two key physical mechanisms that underlie droplet growth: diffusion-driven or ripening-dominated growth. To explain the experimental observations, we developed a quantitative theory that uncovers the mechanical role of chromatin and condensate material properties in regulating condensate growth in a heterogeneous environment. By fitting our theory to experimental data, we find that condensate surface tension is critical in determining whether condensates undergo elastic or Ostwald ripening. Our model also predicts that chromatin heterogeneity can influence condensate nucleation and growth, which we validated by experimentally perturbing the chromatin organization and controlling condensate nucleation. By combining quantitative experimentation with theoretical modeling, our work elucidates how condensate surface tension and chromatin heterogeneity govern nuclear condensate ripening, implying that cells can control both condensate properties and the chromatin organization to regulate condensate growth in the nucleus. 
    more » « less
  2. SUMMARY Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin “domains” and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and “safe” homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel “off-pore” role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote. HighlightsNup88 and Sec13 recruit Nup98 to heterochromatic DSBs downstream from Smc5/6Nup88, Sec13 and Nup98 promote repair focus mobilization in heterochromatin ‘off-pore’Nup98 excludes Rad51 from repair sites inside the heterochromatin domainPhase separation by Nup98 is required and sufficient for relocalization and Rad51 exclusion 
    more » « less
  3. null (Ed.)
    Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to “modulate” fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure–property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena. 
    more » « less
  4. This article describes an experimental and computational investigation on the possible aryne reactivity modes in the course of the reaction of two highly energetic molecules, an aryne and a 1,2,4,5-tetrazine. 
    more » « less